NULL, Vulnerabilities and Fuzzing

I remember seeing Ilja at BH07. We talked about Kernel attacks, aka privilege escalation. He told me, also, back then, that he found some holes that he managed to execute code through. I think the platform of target was Windows, although Ilja is specializing in Unix. Back in ’05 already he had a talk about Unix Kernel Auditing. Nothing new probably there, at least for the time being. However, the new approach of fuzzing the kernel, the system calls to be accurate, was pretty new. But feel free to correct me if I’m wrong about it. And it seems Ilja managed to find some holes using fuzzing. (BTW, a much more interesting paper from him about Unusual Bugs.)

Personally, I don’t believe in fuzzing. Usually the holes I find – there is no way a fuzzer will find. Although, I do believe that you need to mix tools/knowledge in order to find holes and audit a software in a better way. It is enough that there is a simple validation of some parameter you pass to a specific potential-hole’y function and all your test can be thrown away because of that validation, though, there is still a weakness in that function, you won’t get to it. Then you say “Ah Uh”, and you think that you can refine the randomness of the parameters you pass to that function and hopefully prevail. Well, it might work, it might not. As I said, I’m not a big fan of fuzzing.

Although, it might be cool to have a tool that analyzes the code of a function and builds the parameters in a special way to make a code coverage of 100% on that function, which is not fuzzing anymore and means: you walk all paths of execution and the chances to find a weakness are so much greater. Writing such a tool is crazyness, and yet possible, if you ask me.

Fuzzing or not, there are still weaknesses in Win32k, which supposed to be one of the most “secured”/audited components in the Kernel. Probably because many researches had their work on it as well. And that’s simply sad.

Speaking about Ilja’s fuzzing of kernel and stuff, and thinking we are cool to find weaknesses nowadays, Mark Russinovich wrote NTCrash back in ’96 for god sake and, it was a Fuzzer(!), but back then nobody called it or knew about fuzzers. And NTCrash as simple as it is, found some weaknesses in kernel system calls of NT4 ;) Respect (though today it won’t even scratch the kernel, so we might think ourselves cool for still finding stuff :) ).

A friend and I are trying to audit another application, and my friend found some NULL dereference which crashes that software. So we fired up Olly and tried to see what’s going on. It seems that some interface is queried and returns a successful code value and at the same time we get NULL for that interface, which means something is really f*cked up there. Thing is, as you probably can imagine for yourself, we want to execute code out of it. But odds seem to be against us at this time, since we can’t control that NULL or anything about it.

I then wanted to see what people have done with NULL before, how to exploit it better. And usually 99% of the applications running out there don’t have page 0 mapped to their address space. But CSRSS and NTVDM for instance, do have it mapped, but who cares now…? It doesn’t help our cause. Besides, you probably can’t control that page 0 and its data anyway. So I encountered that Flash Exploitation. To be honest, I didn’t read all of the white paper about the exploitation, I only looked for how the arbitary data write worked. And it seems that some CALLOC had failed to allocate memory because of an integer overflow weakness and from there you got a NULL pointer to begin with. But Flash didn’t access that pointer immediately – it had some pointer arithmetic added to it. And you guessed it right, you can control some offset before the pointer is really accessed, thus you can write (almost) anywhere you want. Now I really don’t underestimate the exploitation, from the bits I read it is a crazy and very beautiful exploitation. But to say that it is a new technique and a new class of exploitation is one thing that I really don’t agree to. You know what, looking at it in a different light – it was probably not leading to a code execution if that CALLOC not returned NULL, because then you won’t know where you are on the heap and you couldn’t really write to anywhere you knew accurately. And besides, the NULL wasn’t dererferenced directly and an offset was added to it (no matter what the calculation was for the sake of conversation), so therefore I don’t see it so exciting if you ask me (again, not the exploitation but the “new class of exploitation”). Still you should check it out :)

So, as I saw that no one did anything really useful with a real NULL dereference, it seems that the weakness he found is only a DoS, but maybe we can control something there, yet to be researched…

3 Responses to “NULL, Vulnerabilities and Fuzzing”

  1. mxatone says:

    There is also the Firefox NULL deference vulnerability. And it seems more easy to exploit : http://blogs.iss.net/archive/cve-2008-0017.html

  2. Erez says:

    Perhaps I’m lacking imagination, but NULL dereferences seem inherently non-exploitable, unless you manage to control the exception handling.

  3. […] posts a go I talked about vulnerabilities. So here’s some Zero Day. This will crash your system, unless you’re on Vista (which is […]

Leave a Reply